Computer Vision: Algorithms and Applications

Stereo Correspondence

Jing Luo | Megvii Tech Talk | Apr 2018

1. Introduction to Stereo Vision
Introduction

- What is stereo vision?
 - The word “stereo” comes from the Greek for “solid”
 - Stereo vision: how we perceive solid shape

- Stereo matching
 - Take two or more images and estimate a 3D model of the scene by finding matching pixels in the images and converting their 2D positions into 3D depths.

- Application
 - Photogrammetric matching of aerial images
 - Modeling of the human visual system
 - Robotic navigation and manipulation
 - View interpolation and image-based rendering
 - 3D model building
Introduction
Introduction
2. Epipolar Geometry
Two-frame structure from motion

- **3D rotation**
 - Also known as 3D rigid body motion or the 3D Euclidean transformation, it can be written as
 \[x' = Rx + t \quad \text{or} \quad x' = [R \ t] \bar{x} \]

 \(R \) is a 3 \times 3 orthonormal rotation matrix with \(RR^T = I \) and \(|R| = 1\).

- **Epipolar geometry**
 - \(d_1 \hat{x}_1 = p_1 = Rp_0 + t = R(d_0 \hat{x}_0) + t \)
 - \(d_1 [t] \times \hat{x}_1 = d_0 [t] \times R \hat{x}_0 \)
 - \(d_0 \hat{x}_1^T [t] \times R \hat{x}_0 = d_1 \hat{x}_1^T [t] \times \hat{x}_1 = 0 \)

- **Epipolar constraint**
 - \(\hat{x}_1^T E \hat{x}_0 = 0 \), where \(E = [t] \times R \) is the essential matrix.
Two-frame structure from motion

- Another perspective:
 - Epipolars: e_0, e_1
 - Epipolar plane: c_0, c_1, and p define a plane
 - Epipolar line: Intersections of epipolar plane with the image planes
 - Epipolar constraint: Corresponding points on conjugate epipolar lines

\[
(x_0, R^{-1} \hat{x}_1, -R^{-1}t) = (R \hat{x}_0, \hat{x}_1, -t) = \hat{x}_1 \cdot (t \times R \hat{x}_0) = \hat{x}_1^T ([t] \times R) \hat{x}_0 = 0
\]

\[
\hat{x}_1^T l_1 = 0 \quad \hat{x}_0 \text{ in image 0} \quad \frac{l_1 = E \hat{x}_0}{l_1 \text{ in image 1}}
\]
Two-frame structure from motion

\[\hat{x}_0 \text{ in image 0} \quad \overrightarrow{l_1} = E\hat{x}_0 \quad l_1 \text{ in image 1} \]
Two-frame structure from motion

\[
F = \begin{pmatrix}
-0.00310695 & -0.0025646 & 2.96584 \\ -0.028094 & -0.00771621 & 56.3813 \\ 13.1905 & -29.2007 & -9999.79 \\
\end{pmatrix} \begin{pmatrix}
343.53 \\ 221.70 \\ 1.0 \\
\end{pmatrix}
\]

\[
x = 343.5300 \quad y = 221.7005
\]

0.0001 \rightarrow 0.0295
0.0045 \rightarrow 0.9996
-1.1942 \rightarrow -265.1531

normalize so sum of squares of first two terms is 1 (optional)
Two-frame structure from motion

\[
\begin{pmatrix}
205.5526 & 80.5 & 1.0 \\
-0.00310695 & -0.0025646 & 2.96584 \\
-0.028094 & -0.00771621 & 56.3813 \\
13.1905 & -29.2007 & -9999.79
\end{pmatrix}
\]

\[
L = (0.3211 \quad -0.9470 \quad -151.39)
\]

\[
L = (0.0010 \quad -0.0030 \quad -0.4851)
\]

\[
\rightarrow (0.3211 \quad -0.9470 \quad -151.39)
\]

right

left

\[
x = 205.5526 \quad y = 80.5000
\]
Two-frame structure from motion

- How to calculate essential matrix?

\[
\hat{x}_1^T E \hat{x}_0 = 0
\]

\[
x_{i0}x_{i1}e_{00} + y_{i0}x_{i1}e_{01} + x_{i1}e_{02} + \\
x_{i0}y_{i1}e_{00} + y_{i0}y_{i1}e_{11} + y_{i1}e_{12} + \\
x_{i0}e_{20} + y_{i0}e_{21} + e_{22} = 0
\]

- Method 1: SVD with more than eight equations
- Method 2: make use of the condition that \(E \) is rank-deficient

\[
E = \alpha E_0 + (1 - \alpha) E_1
\]

\[
\det |\alpha E_0 + (1 - \alpha) E_1| = 0
\]
Rectification

- Rectifying (i.e., warping) the input images so that corresponding horizontal scanlines are epipolar lines.
After rectification:

\[d = f \frac{B}{Z} \]

\[x' = x + d(x, y), \quad y' = y \]
Plane sweep

- Sweeping a set of planes through a scene:

Virtual camera

Homography:
\[u = Hx \]

Input image \(k \)

\(d \)

\(k \)
3.
Sparse Correspondence
3D curves and profiles

- Surface reconstruction from occluding contours
4.
Dense Correspondence
Dense correspondence algorithms

4 steps:
- 1. matching cost computation;
- 2. cost (support) aggregation;
- 3. disparity computation and optimization;
- 4. disparity refinement.

Local algorithm
- use a matching cost that is based on a support region

Global algorithm
- make explicit smoothness assumptions and then solve a global optimization problem
Similarity measures

- **Sum-of-squared difference technique**
 - SSD is the template matching method done by finding the lowest difference value between input and template. The differences are squared in order to remove the sign.

 \[
 SSD(\overline{p}, \overline{d}) = \sum_{i=-N/2}^{N/2} \sum_{j=-N/2}^{N/2} (I_1(x+i,y+j) - I_2(x+i,y+j))^2
 \]

- **Other methods**
 - Normalized correlation coefficients
 - Mutual information
 - Normalized gradient field
Local methods

- Local and window-based methods aggregate the matching cost by summing or averaging over a support region.
 - Support region can be either two-dimensional at a fixed disparity (favoring fronto-parallel surfaces), or three-dimensional in x-y-d space (supporting slanted surfaces).

- Aggregation with a fixed support region can be performed using 2D or 3D convolution.

\[C(x, y, d) = w(x, y, d) \ast C_0(x, y, d) \]
Local methods

Aggregation window sizes and weights adapted to image content (Tombari, Mattoccia, Di Stefano et al. 2008) © 2008 IEEE: (a) original image with selected evaluation points; (b) variable windows (Veksler 2003); (c) adaptive weights (Yoon and Kweon 2006); (d) segmentation-based (Tombari, Mattoccia, and Di Stefano 2007). Notice how the adaptive weights and segmentation-based techniques adapt their support to similarly colored pixels.
Local methods

Uncertainty in stereo depth estimation (Szeliski 1991b): (a) input image; (b) estimated depth map (blue is closer); (c) estimated confidence (red is higher). As you can see, more textured areas have higher confidence.
Global optimization

- Many global methods are formulated in an energy-minimization framework.
 - the objective is to find a solution d that minimizes a global energy
 \[
 E(d) = E_d(d) + \lambda E_s(d)
 \]
 \[
 E_d(d) = \sum_{(x,y)} C(x, y, d(x, y))
 \]
 \[
 E_s(d) = \sum_{(x,y)} \rho(d(x, y) - d(x + 1, y)) + \rho(d(x, y) - d(x, y + 1))
 \]
 \[
 \rho_d(d(x, y) - d(x + 1, y)) \cdot \rho_I(\|I(x, y) - I(x + 1, y)\|)
 \]
Global optimization

- Simulated annealing
- Max-flow / Graph cut
Global optimization

- Dynamic programming
Global optimization

- Segmentation-based techniques
Global optimization

- Z-keying and background replacement
5. Multi-view stereo
Epipolar plane

- Epipolar plane image
3D reconstruction

- Volumetric and 3D surface reconstruction
3D reconstruction

- Shape from silhouettes
3D reconstruction

- Shape from silhouettes